TensorFlow.NET
latest

The Definitive Guide to TensorFlow.NET

  • The Definitive Guide to TensorFlow.NET
  • Foreword
  • Preface
  • Get started with TensorFlow.NET
  • Chapter 1. Tensor
  • Chapter 2. Constant
  • Chapter. Variable
  • Chapter. Placeholder
  • Chapter. Graph
  • Chapter. Session
  • Chapter. Operation
  • Chapter. Queue
  • Chapter. Gradient
  • Chapter. Trainer
  • Chapter. Eager Mode
  • Chapter. Linear Regression
  • Chapter. Logistic Regression
  • Chapter. Nearest Neighbor
  • Chapter. Image Recognition
  • Chapter. Neural Network
  • Chapter. Convolution Neural Network
TensorFlow.NET
  • Docs »
  • Welcome to TensorFlow.NET’s documentation!
  • Edit on GitHub

Welcome to TensorFlow.NET’s documentation!¶

The Definitive Guide to TensorFlow.NET

  • The Definitive Guide to TensorFlow.NET
    • The CSharp binding for Google’s TensorFlow
      • An Open Source Machine Learning Framework for Everyone
  • Foreword
  • Preface
  • Get started with TensorFlow.NET
    • Install the TensorFlow.NET SDK
    • Start coding Hello World
  • Chapter 1. Tensor
    • Represents one of the outputs of an Operation
      • What is Tensor?
      • How to create a Tensor?
      • Data Structure of Tensor
  • Chapter 2. Constant
    • How to create a Constant
    • Dive in Constant
      • NDArray
      • Tensor
      • Other functions to create a Constant
  • Chapter. Variable
  • Chapter. Placeholder
  • Chapter. Graph
    • Defining the Graph
    • Save Model
    • Freezing the Graph
      • Why we need it?
    • Optimizing for Inference
    • Restoring the Model
  • Chapter. Session
    • Running Computations in a Session
  • Chapter. Operation
  • Chapter. Queue
    • FIFOQueue
    • PaddingFIFOQueue
    • PriorityQueue
    • RandomShuffleQueue
  • Chapter. Gradient
    • Register custom gradient function
  • Chapter. Trainer
    • Saver
    • Saver Builder
      • Bulk Saver Builder
  • Chapter. Eager Mode
  • Chapter. Linear Regression
    • What is linear regression?
    • Cost Function
    • Gradient Descent
  • Chapter. Logistic Regression
    • What is logistic regression?
  • Chapter. Nearest Neighbor
  • Chapter. Image Recognition
    • Let’s get started with real code.
      • 1. Prepare data
      • 2. Load image file and normalize
      • 3. Load pre-trained model and predict
      • 4. Print the result
  • Chapter. Neural Network
  • Chapter. Convolution Neural Network
Next

© Copyright 2019, Haiping Chen Revision a92f6039.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
Downloads
html
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.